User guide


pip install pyinstrument

Pyinstrument supports Python 3.7+.

Profile a Python script

Call Pyinstrument directly from the command line. Instead of writing python, type pyinstrument Your script will run as normal, and at the end (or when you press ^C), Pyinstrument will output a colored summary showing where most of the time was spent.

Here are the options you can use:

Usage: pyinstrument [options] scriptfile [arg] ...

  --version             show program's version number and exit
  -h, --help            show this help message and exit
  --load-prev=ID        instead of running a script, load a previous report
  -m MODULE_NAME        run library module as a script, like 'python -m
  --from-path           (POSIX only) instead of the working directory, look
                        for scriptfile in the PATH environment variable
  -o OUTFILE, --outfile=OUTFILE
                        save to <outfile>
  -r RENDERER, --renderer=RENDERER
                        how the report should be rendered. One of: 'text',
                        'html', 'json', 'speedscope', or python import path
                        to a renderer class
  -t, --timeline        render as a timeline - preserve ordering and don't
                        condense repeated calls
  --hide=EXPR           glob-style pattern matching the file paths whose
                        frames to hide. Defaults to '*/lib/*'.
  --hide-regex=REGEX    regex matching the file paths whose frames to hide.
                        Useful if --hide doesn't give enough control.
  --show=EXPR           glob-style pattern matching the file paths whose
                        frames to show, regardless of --hide or --hide-regex.
                        For example, use --show '*/<library>/*' to show frames
                        within a library that would otherwise be hidden.
  --show-regex=REGEX    regex matching the file paths whose frames to always
                        show. Useful if --show doesn't give enough control.
  --show-all            show everything
  --unicode             (text renderer only) force unicode text output
  --no-unicode          (text renderer only) force ascii text output
  --color               (text renderer only) force ansi color text output
  --no-color            (text renderer only) force no color text output

Protip: -r html will give you a interactive profile report as HTML - you can really explore this way!

Profile a specific chunk of code

Pyinstrument also has a Python API. Just surround your code with Pyinstrument, like this:

from pyinstrument import Profiler

profiler = Profiler()

# code you want to profile



If you get “No samples were recorded.” because your code executed in under 1ms, hooray! If you still want to instrument the code, set an interval value smaller than the default 0.001 (1 millisecond) like this:

profiler = Profiler(interval=0.0001)

Experiment with the interval value to see different depths, but keep in mind that smaller intervals could affect the performance overhead of profiling.

Protip: To explore the profile in a web browser, use profiler.open_in_browser(). To save this HTML for later, use profiler.output_html().

Profile code in Jupyter/IPython

Via IPython magics, you can profile a line or a cell in IPython or Jupyter.


%load_ext pyinstrument
import time

def a():
def b():
def c():
def d():
def e():

To customize options, see %%pyinstrument??.

Profile a web request in Django

To profile Django web requests, add pyinstrument.middleware.ProfilerMiddleware to MIDDLEWARE in your

Once installed, add ?profile to the end of a request URL to activate the profiler. Your request will run as normal, but instead of getting the response, you’ll get pyinstrument’s analysis of the request in a web page.

If you’re writing an API, it’s not easy to change the URL when you want to profile something. In this case, add PYINSTRUMENT_PROFILE_DIR = 'profiles' to your Pyinstrument will profile every request and save the HTML output to the folder profiles in your working directory.

If you want to show the profiling page depending on the request you can define PYINSTRUMENT_SHOW_CALLBACK as dotted path to a function used for determining whether the page should show or not. You can provide your own function callback(request) which returns True or False in your

def custom_show_pyinstrument(request):
    return request.user.is_superuser

PYINSTRUMENT_SHOW_CALLBACK = "%s.custom_show_pyinstrument" % __name__

You can configure the profile output type using setting’s variable PYINSTRUMENT_PROFILE_DIR_RENDERER. Default value is pyinstrument.renderers.HTMLRenderer. The supported renderers are pyinstrument.renderers.JSONRenderer, pyinstrument.renderers.HTMLRenderer, pyinstrument.renderers.SpeedscopeRenderer.

Profile a web request in Flask

A simple setup to profile a Flask application is the following:

from flask import Flask, g, make_response, request
app = Flask(__name__)

def before_request():
    if "profile" in request.args:
        g.profiler = Profiler()

def after_request(response):
    if not hasattr(g, "profiler"):
        return response
    output_html = g.profiler.output_html()
    return make_response(output_html)

This will check for the ?profile query param on each request and if found, it starts profiling. After each request where the profiler was running it creates the html output and returns that instead of the actual response.

Profile a web request in FastAPI

To profile call stacks in FastAPI, you can write a middleware extension for pyinstrument.

Create an async function and decorate with app.middleware('http') where app is the name of your FastAPI application instance.

Make sure you configure a setting to only make this available when required.

from pyinstrument import Profiler

PROFILING = True  # Set this from a settings model

    async def profile_request(request: Request, call_next):
        profiling = request.query_params.get("profile", False)
        if profiling:
            profiler = Profiler(interval=settings.profiling_interval, async_mode="enabled")
            await call_next(request)
            return HTMLResponse(profiler.output_html())
            return await call_next(request)

To invoke, make any request to your application with the GET parameter profile=1 and it will print the HTML result from pyinstrument.

Profile a web request in Falcon

For profile call stacks in Falcon, you can write a middleware extension using pyinstrument.

Create a middleware class and start the profiler at process_request and stop it at process_response. The middleware can be added to the app.

Make sure you configure a setting to only make this available when required.

from pyinstrument import Profiler
import falcon

class ProfilerMiddleware:
    def __init__(self, interval=0.01):
        self.profiler = Profiler(interval=interval)

    def process_request(self, req, resp):

    def process_response(self, req, resp, resource, req_succeeded):

PROFILING = True  # Set this from a settings model

app = falcon.App()

To invoke, make any request to your application and it launch a new window printing the HTML result from pyinstrument.

Profile Pytest tests

Pyinstrument can be invoked via the command-line to run pytest, giving you a consolidated report for the test suite.

pyinstrument -m pytest [pytest-args...]

Or, to instrument specific tests, create and auto-use fixture in in your test folder:

from pathlib import Path
import pytest
from pyinstrument import Profiler

TESTS_ROOT = Path.cwd()

def auto_profile(request):
    PROFILE_ROOT = (TESTS_ROOT / ".profiles")
    # Turn profiling on
    profiler = Profiler()

    yield  # Run test

    results_file = PROFILE_ROOT / f"{}.html"
    with open(results_file, "w", encoding="utf-8") as f_html:

This will generate a HTML file for each test node in your test suite inside the .profiles directory.

Profile something else?

I’d love to have more ways to profile using Pyinstrument - e.g. other web frameworks. PRs are encouraged!